Note On Orthonormal Expansions

Communicated by Oved Shisha

Theorem. Let $-\infty<a<b<\infty$ and let $\omega(x)$ be a real function, summable over (a, b) and $\geqslant 0$ there. Let $g_{1}, g_{2}, \ldots, g_{n}$ be real functions, continuous on $[a, b]$ and orthonormal there with respect to the weight ω. Then, for any reals $a_{1}, a_{2}, \ldots, a_{n}$, we have

$$
\begin{equation*}
\sum_{k=1}^{n}\left|a_{k}\right| \leqslant\left[n \int_{a}^{b} \omega(x) d x\right]^{1 / 2} \cdot \max _{a \leqslant x \leqslant b}\left|\sum_{k=1}^{n} a_{k} g_{k}(x)\right| \tag{1}
\end{equation*}
$$

If f is a real function, continuous on $[a, b]$, and if a_{k} is its Fourier coefficient with respect to g_{k} and to the weight ω :

$$
\begin{equation*}
a_{k}=\int_{a}^{b} \omega(x) f(x) g_{k}(x) d x, \quad k=1,2, \ldots, n \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{k=1}^{n}\left|a_{k}\right| \leqslant\left[n \int_{a}^{b} \omega(x) d x\right]^{1 / 2} \cdot \max _{a \leqslant x \leqslant b}|f(x)| \tag{3}
\end{equation*}
$$

Proof. Let f be a real function, continuous on $[a, b]$, and let (2) hold. Since $\sum_{k=1}^{n} a_{k}^{2} \leqslant \int_{a}^{b} \omega(x) f^{2}(x) d x$, we have by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\sum_{k=1}^{n}\left|a_{k}\right| & =\sum_{k=1}^{n}\left|a_{k}\right| \cdot 1 \leqslant\left[\sum_{k=1}^{n} a_{k}^{2} \sum_{k=1}^{n} 1^{2}\right]^{1 / 2} \leqslant n^{1 / 2}\left[\int_{a}^{b} \omega(x) f^{2}(x) d x\right]^{1 / 2} \\
& \leqslant\left[n \int_{a}^{b} \omega(x) d x\right]^{1 / 2} \cdot \max _{a \leqslant x \leqslant b}|f(x)|
\end{aligned}
$$

Let now $a_{1}, a_{2}, \ldots, a_{n}$ be arbitrary reals. Then, clearly, (2) holds for $f(x) \equiv \sum_{j=1}^{n} a_{j} g_{j}(x)$. Hence, by (3), we have (1).

Example. Consider the functions

$$
\begin{gather*}
\frac{1}{\sqrt{2 \pi}}, \frac{1}{\sqrt{ } \pi} \cos x, \frac{1}{\sqrt{\pi}} \sin x, \frac{1}{\sqrt{\pi}} \cos 2 x \\
\frac{1}{\sqrt{ } \pi}=\sin 2 x, \ldots, \frac{1}{\sqrt{ } \pi}=\cos n x, \frac{1}{\sqrt{ } \pi} \sin n x \quad(n \geqslant 1), \tag{4}
\end{gather*}
$$

orthonormal on $[-\pi, \pi]$. By (1), for any reals $a_{0}, a_{1}, b_{1}, \ldots, a_{n}, b_{n}$,

$$
\begin{aligned}
\left|a_{0}\right| & +\sum_{k=1}^{n}\left|a_{k}\right|+\left|b_{k}\right| \\
& \leqslant[2(2 n+1)]^{1 / 2} \cdot \max _{-\pi \leqslant x \leqslant \pi}\left|\frac{a_{0}}{\sqrt{2}}+\sum_{k=1}^{n} a_{k} \cos k x+b_{k} \sin k x\right|
\end{aligned}
$$

Let f be a real function, continuous on $(-\infty, \infty)$ and of period 2π there, let its ordinary Fourier series be $\left(\alpha_{0} / 2\right)+\sum_{k=1}^{\infty} \alpha_{k} \cos k x+\beta_{k} \sin k x$, and let $a_{0}, a_{1}, b_{1}, \ldots, a_{n}, b_{n}$, respectively, be its Fourier coefficients with respect to the functions (4) and the weight 1 . Then

$$
a_{0}=\sqrt{\frac{\pi}{2}} \alpha_{0} ; \quad a_{k}=\sqrt{\pi} \alpha_{k}, \quad b_{k}=\sqrt{\pi} \beta_{k}, \quad k=1,2, \ldots, n .
$$

Since, by (3), $\left|a_{0}\right|+\sum_{k=1}^{n}\left|a_{k}\right|+\left|b_{k}\right| \leqslant[2 \pi(2 n+1)]^{1 / 2} \cdot \max _{-\pi \leqslant x \leqslant \pi}|f(x)|$, we have

$$
\frac{\left|\alpha_{0}\right|}{\sqrt{2}}+\sum_{k=1}^{n}\left|\alpha_{k}\right|+\left|\beta_{k}\right| \leqslant[2(2 n+1)]^{1 / 2} \cdot \max _{-\pi \leqslant x \leqslant \pi}|f(x)| .
$$

This note corrects an error in [1], Problem 21, p. 125.

Reference

1. E. W. Cheney, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.

Charles C. Miao
G. Adomian

Athens, Georgia 30601

